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Abstract. Stock Markets  have been an integral  part of our socio-
economic society. People invest a lot of monetary funds into them so
as to earn gains. But that is not the case every time due to the ever
wavering nature of the markets. To minimize the risk of loss due to
drastically  changing  market  people  have  come  up  with  many
predictive  models  to  simulate  the  future  of  stock  markets.  This
paper presents a model that can predict the stock market. The use
of Stacked Long Short Term Memory gives the model an advantage
over the conventional machine learning models to provide better
MSE.
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1   Introduction

  
Stock Market is a major factor that defines how successful  a company is. Google,
Apple and others are major players in the market and how these companies fare on the
market can impact other companies. So, how these companies do on the market in the
future should be of great importance. This neural network attempts to do the same for
Google's stock price from beginning of 2012 to the end of 2016 and predict upon data
it has not been trained upon.
A specific  kind of Neural  Network called the Recurrent Neural  Network has been
used for the purpose. The RNN is a specially designed neural network that is used for
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time-series  analysis viz.,  each  layer  predicts its  output based on the output of  the
previous layer [1].
When  RNNs were  first  developed it  faced  a  problem.  With each  iteration  as  the
gradient  is  passed back for  updating the weights the process  is  slower for  far  off
layers  and the input that  is  transmitted for  the next  iteration is through untrained
neurons which affects the output. This is known as the Vanishing Gradient Problem
[2].
This  was  rectified  by Long Short  Term Memories  that  do not  use  the  long term
dependencies for computing the outputs [3][4][7]. This is the network used for this
particular model. The formula for a RNN is specified in
Equation 1.

                                             (1)

It basically says the current hidden state  h(t)  is a function  f of the previous hidden
state h(t-1) and the current input x(t). The theta are the parameters of the function f. 

  
A study of the stock market is integral for building a prediction model [5].It helps in
understanding the nuances of the said market, figuring out the features that is required
for the model and edging out the features that is not required [6].

2   Methodology Used

This model consist of the following steps

Step 1: Data Preparation

The model will predict based on date and opening value. The opening value is the
value the market opens at for that particular trade day. 

The data collected was normalized for values between 0 and 1 using Equation 2.

                                         (2)

The scaled data is them recreated to a data structure with 40 and 60 time steps and 1
output which will be used as an input for the LSTM in which the output is decided by
the previous 80 inputs and so on.Then the data is reshaped based on three dimensions:
number of stock prices, the number of time steps and the number of indicators.



Step 2: Building the model

In the neural network model, a LSTM with 50 input neurons and add a Dropout layer
with  forty  percent  ignorance  viz  20  neurons  will  be  ignored  during  training  for
regularization.

 For the second and the third layer the model mimics the input layer with the same
parameters thereby creating a stacked LSTM.

Fig. 1. Basic structure of a stacked LSTM.

The next layer is the output layer with one neuron.  The output is computed based on
an optimizer and loss function. The optimizer used is the ADAM or the Adaptive
Moment Estimation optimizer provided in Equations 3 and 4.

                        (3)

                        (4)

where Mt is the first moment and vt is the second moment of the gradient and the loss
function(error metric) used is Mean Squared Error (MSE).

Step 3: Fitting the model

In this step data is fed to the,  neural  network and trained for prediction assigning
random biases and weights.



Step 4: Output

The output generated is compared with target values. The error obtained during each
epoch is reduced through back propagation which adjusts the weights and biases of
each neuron (node) present in the subsequent layers.

Table 1.  Font sizes of headings. Table captions should always be positioned above the tables. 

S.No. Number of Epochs MSE Achieved
    1          100    0.0030
    2         200    0.0019
    3          300    0.0017

Lemmas,  Propositions,  and  Theorems. The  numbers  accorded  to  lemmas,
propositions,  and  theorems,  etc.  should appear  in  consecutive  order,  starting  with
Lemma 1, and not, for example, with Lemma 11. 

3   Results and Discussion

The hardware used is Intel i5200U CPU clocked at 2.20GHz as a training platform.
The model is implemented in Keras for python as front end and Tensorflow backend
as coding environment.

The training data set used is Google's stock price from beginning of 2012 to the end
of 2016 collected for each financial day for each month of the financial year ranging
from 03-01-2012 to 16-12-2016. 

The Test set used is Google’s stock price for January 2017.

The loss function Mean Square Error (MSE) or Mean Square deviation (MSD) of an
estimator  (of  a  procedure  for  estimating  an  unobserved  quantity)  measures  the
average of the squares of the errors or deviations. Large errors are easily identified
and reduced using this metric using equation 5.

                                                                                           (5)

For training the optimizer  used is ADAM and the data was normalized. Date and
Open values are the parameters for various number of epochs and a batch size of 32 to



calculate MSE. Table 1 and 2 shows the MSE achieved for different epochs for 40
and 60 time steps.

Table 1.  MSE achieved for different Epochs for 40 time steps

S.No. Number of Epochs MSE Achieved
    1          100    0.0030
    2         200    0.0019
    3          300    0.0017

           

Fig. 2. Real vs Predicted Stock Price for 100 epochs for 40 time steps

Table 2.  MSE achieved for different Epochs for 60 time steps

S.No. Number of Epochs MSE Achieved
    1          100    0.0027
    2         200    0.0017
    3          300    0.0016



      

Fig. 3. Real vs Predicted Stock Price for 200 epochs for 40 time steps

          



Fig. 4. Real vs Predicted Stock Price for 300 epochs for 40 time steps

Fig 2 and Fig 5 show more MSE because it was only trained for 100 Epochs and
moreover it is the first training.

In Fig.3 and Fig 6 the model shows better MSE due to increase in the number of
epochs

          Fig.

5. Real vs Predicted Stock Price for 100 epochs for 60 time steps

In Fig.4 and Fig 7, the model predicts closest to the real value because the number of
epochs is increased.

From table 1 and 2 it is inferred that the more the number of time steps the better the
MSE achieved.  

4   Conclusion

The increasing importance of stock markets is pushing researchers into finding newer
methods for prediction which not only helps researchers but traders alike. This model



focuses  on prediction using LSTM. As the number of epochs increases  the model
shows better Mean Square Error up to a certain number until convergence is achieved.

Fig. 6. Real vs Predicted Stock Price for 200 epochs for 60 time steps

         

Fig. 7. Real vs Predicted Stock Price for 300 epochs for 60 time steps
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